POWER7: IBM's Next Generation Server Processor

Acknowledgment: This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002
Outline

- POWER7 Design Overview
 - POWER Processor History
 - POWER7™ Motivation
 - Design details
 - Summary

- How to Realize Multi-core Potential
 - Cache Hierarchy Technology
 - Advances in Memory Subsystem
 - Advances in Off-chip Signaling Technology
 - Coherence Innovation
20+ Years of POWER Processors

- 1990 RISC Architecture
- 1994 SMP
- 1995 Out of Order Execution
- 1996 64 Bit Enterprise Architecture
- 1997 Hardware Multi-Threading
- 2001 Dual Core Processors
- 2001 Large System Scaling
- 2001 Shared Caches
- 2003 On Chip Memory Control
- 2003 SMT
- 2006 Ultra High Frequency
- 2006 Dual Scope Coherence Mgmt
- 2006 Decimal Float/VSX
- 2006 Processor Recovery/Sparing
- 2009 Balanced Multi-core Processor
- 2009 On Chip EDRAM

* Dates represent approximate processor power-on dates, not system availability
POWER7 Processor Chip

- 567mm² Technology: 45nm lithography, Cu, SOI, eDRAM
- 1.2B transistors
 - Equivalent function of 2.7B
 - eDRAM efficiency
- Eight processor cores
 - 12 execution units per core
 - 4 Way SMT per core
 - 32 Threads per chip
 - 256KB L2 per core
- 32MB on chip eDRAM shared L3
- Dual DDR3 Memory Controllers
 - 100GB/s Memory bandwidth per chip sustained
- Scalability up to 32 Sockets
 - 360GB/s SMP bandwidth/chip
 - 20,000 coherent operations in flight
- Advanced pre-fetching Data and Instruction
- Binary Compatibility with POWER6

* Statements regarding SMP servers do not imply that IBM will introduce a system with this capability.
POWER7 Design Principles:

Multiple optimization Points

- Balanced Design
 - Multiple optimization points
 - Improved energy efficiency
 - RAS improvements

- Improved Thread Performance
 - Dynamic allocation of resources
 - Shared L3

- Increased Core parallelism
 - 4 Way SMT
 - Aggressive out of order execution

- Extreme Increase in Socket Throughput
 - Continued growth in socket bandwidth
 - Balanced core, cache, memory improvements

- System
 - Scalable interconnect
 - Reduced coherence traffic

* Statements regarding SMP servers do not imply that IBM will introduce a system with this capability.

Graphs for illustration purposes only (Not actual data)
POWER7 Design Principles:

Flexibility and Adaptability

- **Cores:**
 - 8, 6, and 4-core offerings with up to 32MB of L3 Cache
 - Dynamically turn cores on and off, reallocating energy
 - Dynamically vary individual core frequencies, reallocating energy
 - Dynamically enable and disable up to 4 threads per core

- **Memory Subsystem:**
 - Full 8 channel or reduced 4 channel configurations

- **System Topologies:**
 - Standard, half-width, and double-width SMP busses supported

- **Multiple System Packages**

2/4s Blades and Racks
- Single Chip Organic
 - 1 Memory Controller
 - 3 4B local links

High-End and Mid-Range
- Single Chip Glass Ceramic
 - 2 Memory Controllers
 - 3 8B local links
 - 2 8B Remote links

Compute Intensive
- Quad-chip MCM
 - 8 Memory Controllers
 - 3 16B local links (on MCM)

Statements regarding SMP servers do not imply that IBM will introduce a system with this capability.
POWER7: Core

- **Execution Units**
 - 2 Fixed point units
 - 2 Load store units
 - 4 Double precision floating point
 - 1 Vector unit
 - 1 Branch
 - 1 Condition register
 - 1 Decimal floating point unit
 - 6 Wide dispatch/8 Wide Issue

- **Recovery Function Distributed**
- **1,2,4 Way SMT Support**
- **Out of Order Execution**
- **32KB I-Cache**
- **32KB D-Cache**
- **256KB L2**
 - Tightly coupled to core
POWER7: Performance Estimates

POWER7 Continues Tradition of Excellent Scalability

- Core performance increased by:
 - Re-pipelined execution units
 - Reduced L1 cache latency
 - Tightly coupled L2 cache
 - Additional execution units
 - More flexible execution units
 - Increased pipeline utilization with SMT4 and aggressive out of order execution

- Chip Performance Improved Greater then 4X:
 - High performance on chip interconnect
 - Improved cache utilization
 - Dual high speed integrated memory controllers

- System
 - Advanced SMP links will provide near linear scaling for larger POWER7 systems.

* Performance estimates relate to processor only and should not be used to estimate projected server performance.
Energy Management: Architected Idle Modes

Two Design Points Chosen for Technology

- Nap (optimized for wake-up time)
 - Turn off clocks to execution units
 - Reduce frequency to core
 - Caches and TLB remain coherent
 - Fast wake-Up

- Sleep (optimized for power reduction)
 - Purge caches and TLB
 - Turn off clocks to full core and caches
 - Reduce voltage to V-retention
 - Leakage current reduced substantially
 - Voltage ramps-up on wake up
 - No core re-initialization required

4 PowerPC Architected States

Wake-Up Latency

Energy Reduction
Adaptive Energy Management: Energy Scale™

- Chip FO4 Tuned for Optimal Performance/Watt in Technology

- DVFS (Dynamic Voltage and Frequency Slewing)
 - -50% to +10% frequency slew independent per core
 - Frequency and voltage adjusted based on:
 - Work load and utilization.
 - On board activity monitors

- Turbo-Mode
 - Up to 10% frequency boost
 - Leverages excess energy capacity from:
 - Non worst case work loads
 - Idle cores

- Processor and Memory Energy Usage can be independently Balanced.
 - Real time hardware performance monitors used.
 - On board power proxy logic estimates power

- Power Capping Support
 - Allows budgeting of power to different parts of system
POWER7: Reliability and Availability Features

Fabric Bus Interface to other Chips and Nodes
- ECC protected
- Node hot add /repair

Core Recovery
- Leverage speculative execution resources to enable recovery
- Error detected in GPRs FPRs VSR, flushed and retried
- Stacked latches to improve SER

Alternate Processor Recovery
- Partition isolation for core checkstops

L3 eDRAM
- ECC protected
- SUE handling
- Line delete
- Spare rows and columns

GX IO Bus
- ECC protected
- Hot add

InfiniBand® Interface
- Redundant paths

64 Byte ECC on Memory
- Corrects full chip kill on X8 dimms
- Spare X8 devices implemented

Dual memory chip failures do not cause outage

Selective memory mirror capability to recover partition from dimm failures

HW assisted scrubbing

SUE handling

Dynamic sparing on channel interface

PowerVM Hypervisor protected from full dimm failures

* Statements regarding SMP servers do not imply that IBM will introduce a system with this capability.
Summary

Power Systems™ continue strong
- 7th Generation Power chip:
 - Balanced Multi-Core design
 - EDRAM technology
 - SMT4
- Greater than 4X performance in same power envelope as previous generation
- Scales to 32 socket, 1024 threads balanced system
- Building block for peta-scale PERCS project

POWER7 Systems Running in Lab
- AIX®, IBM i, Linux® all operational

* Statements regarding SMP servers do not imply that IBM will introduce a system with this capability.